acid-base system may be used to explore the dependence of the acid-base character on composition. However, in the considered sodium phosphate melts this approach is impractical due to the high volatility of P_2O_5 at $800-850^\circ$ and the chemically aggressive character of Na₂O. Instead we have made use of the strong acid WO₃ as a basicity probe.

When small amounts of solid WO_3 are added to the phosphate melt, acid-base reactions may occur according to a scheme of the type

phosphate-I (in melt) + $WO_{\delta}(s) =$ phosphate-II (in melt) + WO_{4}^{2-} (in melt)

If WO_3 is a stronger acid than phosphate-II, this reaction will proceed to the right and might be expected to be associated with a certain evolution of heat. On the other hand, if phosphate-II is a stronger acid than WO_3 , the reaction would have a tendency to proceed in the opposite direction. In this way the sign and magnitude of the enthalpy of solution of WO_3 may be used to survey the acid-base properties of the melt.

Let us now return to Figure 3, which gives the enthalpy of solution of solid WO₃ in sodium metaphosphate-pyrophosphate melts with mole fractions of Na₂O ranging from 0.50 to 0.61. At $N_{\text{Na}_2\text{O}} = 0.50$ the enthalpy of solution is +3.8 kcal/mol. This reflects the fact that P₂O₅, the corresponding acid to PO₃⁻, is a very strong acid. As the mole fraction of Na₂O increases above 0.50, there is a sharp drop in the enthalpy of solution to -0.6 kcal at $N_{\text{Na}_{2}\text{O}} = 0.51$ and to -1.6kcal at $N_{\text{Na}_{2}\text{O}} = 0.52$. Clearly the melt now contains significant amounts of a higher phosphate (presumably $P_2O_7^{4-}$), which will react with the added WO₃ to yield the weaker acid PO_3^- and WO_4^{2-} . From about N_{Na_2O} = 0.56 to $N_{\text{Na}_{2}\text{O}}$ = 0.61 the enthalpy of solution of WO₃ is essentially independent of composition, which reflects that the melt now contains two phosphate anions in comparable amounts, *i.e.*, it has buffer properties. At 843° the liquid range of the phosphate melts extends only to about $N_{Na_{2}O} = 0.63$. Therefore we were unable to explore at this temperature the interesting composition range near $N_{Na_{2}O} = 0.67$ associated with very high concentrations of pyrophosphate.

Acknowledgments.—We are indebted to Miss M. C. Bachelder, who carried out the chemical analyses, and to Mr. James Loehlin, who gave us valuable assistance in the evaluation of the X-ray structural data. This work has been supported by the National Science Foundation, the Army Research Office, Durham, N. C., and the Petroleum Research Fund, administered by the American Chemical Society. It also has benefited from the general support of Materials Science at The University of Chicago provided by the Advanced Research Projects Agency, Department of Defense.

> CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, CORNELL UNIVERSITY, ITHACA, NEW YORK 14850

Matrix Isolation Study of Borazine and Boroxine. A Vibrational Analysis

BY ANDREW KALDOR* AND RICHARD F. PORTER

Received July 13, 1970

A vibrational analysis of borazine based on the infrared spectra of matrix-isolated isotopic species $H_3B_3N_3H_3$, $H_3^{10}B_3N_3H_3$, and $D_3B_3N_3H_3$ and the gaseous Raman spectrum of $H_3B_3N_3H_3$ is presented. One of the E' modes, ν_{16} , is reassigned to 1068 cm⁻¹. Two of the inactive A_2' modes, ν_6 and ν_7 , are assigned to 1195 and 782 cm⁻¹, respectively. The literature assignment of the other modes is confirmed, although the position of the A_1' and E'' modes is slightly modified. Strong bands observed in the matrix spectrum of borazine in the regions 1440 and 2500 cm⁻¹ but not resolved in the gas-phase spectra are satisfactorily interpreted as combination bands for a planar D_{3h} molecule without invoking matrix effects or postulating a species of lower symmetry. By using the information available for borazine it is possible, through a combination-band analysis, to assign all the fundamentals of boroxine.

Introduction

The gas-phase infrared and liquid Raman spectra of borazine, $H_3B_3N_3H_3$, were first investigated by Crawford and Edsall.¹ The molecule was assumed to be isoelectronic with benzene, with point group D_{3h} . The symmetric planar structure was proposed by Bauer on the basis of early electron diffraction studies.² The infrared spectra were reinvestigated by Price and coworkers,³ as well as by Silberman.⁴ These studies essentially confirmed the Crawford–Edsall assignments. Kartha, *et al.*, on the basis of observed band shapes and isotope effects reassigned absorption bands at 918, 713,

(3) N. C. Price, R. D. B. Fraser, T. S. Robinson, and H. C. Longuet-Higgins, Discuss. Faraday Soc., 9, 131 (1950).

^{*} Address correspondence to this author at National Bureau of Standards, Washington, D. C. 20234

⁽¹⁾ B. L. Crawford and J. T. Edsail, J. Chem. Phys., 7, 223 (1939).

⁽²⁾ S. H. Bauer, J. Amer. Chem. Soc., 60, 524 (1938).

⁽⁴⁾ E. Silberman, Spectrochim. Acta, Part A, 23, 2021 (1967).

Figure 1.—Infrared spectra of borazine in argon matrix (M/R) = 1000) near 5°K after (A) 3-min deposition and (B) 30-min deposition.

and 393 cm⁻¹ to A_2'' modes.⁵ This left two E' vibrational modes unassigned. Niedenzu and coworkers reported on extensive gas-phase infrared and liquid Raman spectroscopic studies of various isotopically labeled forms of borazine.⁶ They have confirmed the assignments of Kartha, *et al.*, and have assigned all the active fundamentals. Recently Harshbarger, *et al.*,⁷ have repeated the electron diffraction studies on borazine with improved techniques and the results cast doubt on the planar D_{3h} model. Their data indicate that the molecule has either C_2 symmetry, or it is planar with a large out-of-plane vibrational displacement. Another possible explanation is the presence of more than one isomeric form.

Electron diffraction studies on boroxine, $H_3B_3O_3$, which is isoelectronic with borazine, indicate this molecule to be planar with D_{3h} symmetry.⁸ The gas-phase infrared spectrum of boroxine has been analyzed by Grimm, Barton, and Porter,⁹ but no Raman spectrum of this unstable molecule has been obtained. Six of the seven infrared-active vibrational modes of boroxine have been assigned; one A_2'' has not been found.

In this paper a vibrational analysis of borazine based on matrix-isolation infrared spectra and gas-phase Raman data is presented. The matrix-isolation infrared spectrum of boroxine has also been obtained and is used for comparison with the borazine results. The anticipated advantages of the matrix-isolation technique are (a) better resolution of vibrational structure, (b) removal of hot bands, and (c) the observation of matrix effects on the symmetry of trapped molecules.

(9) F. A. Grimm, L. Barton, and R. F. Porter, *ibid.*, 7, 1309 (1968).

Experimental Section

The experimental apparatus and procedures used in the matrix isolation experiments have been described elsewhere.¹⁰ The matrix gases argon, xenon, and 20% argon-80% xenon were premixed with borazine in the M/R ratios 200/1, 500/1, 1000/1 and allowed to stand for 24 hr to ensure thorough mixing. The mixtures were then deposited on a CsI target window maintained near 5°K at the rate of 5-20 mmol/hr. Borazine was prepared by treating *B*-trichloroborazine with NaBH₄.¹¹ Samples of 96% enriched $H_3^{10}B_3N_3H_3$ and $D_3^nB_3N_3H_3$ (where n signifies natural abundance) were also prepared. The argon and xenon were obtained from the Matheson Co. Since boroxine is unstable at ordinary temperatures, it was prepared immediately prior to each experiment by the procedure of Barton, et al.,12 by applying an electrical discharge to a low-pressure mixture of diborane and oxygen. Immediately after the explosion, argon was admitted into the sample bulb to the ratio of M/R = 1000. Spectra of $H_3B_3O_3,\,H_3{}^{10}B_3O_3,\,and\,\,D_3B_3O_3$ were obtained.

Infrared spectra were taken on a Perkin-Elmer 521 spectrophotometer, which was calibrated with CO, CO₂, and NH₃, as well as B_2H_6 impurity in the boroxine. The estimated uncertainty in measured frequencies is $\pm 1 \text{ cm}^{-1}$. The Raman spectra were obtained on a Spex-Ramalog instrument.¹³ The 488-nm argon line of a CRL 52MG laser was used as the excitation source. The laser beam was multipassed through the sample. The borazine sample was sealed at the saturation vapor pressure (200 mm) into a 5-cm long Pyrex cell with 2.4-cm diameter windows at each end.

Results

Weak and strong spectra of borazine in an argon matrix (M/R = 1000) near 5°K are shown in Figure 1. The observed frequencies of $H_3^{n}B_3N_3H_3$, $H_3^{10}B_3N_3H_3$, and $D_3B_3N_3H_3$ are listed in Tables I and II. Previously unreported structure near 1450 and 2500 cm⁻¹ is evident. The 1450-cm⁻¹ region at high resolution is

- (10) A. Kaldor, I. Pines, and R. F. Porter, *ibid.*, 8, 1418 (1969).
- (11) G. H. Dahl and R. Schaeffer, J. Inorg. Nucl. Chem., 12, 380 (1960).
- (12) L. Barton, F. A. Grimm, and R. F. Porter, *Inorg. Chem.*, 5, 2076 (1966).

⁽⁵⁾ V. B. Kartha, S. L. N. G. Krishnamachari, and C. R. Subramaniam, J. Mol. Spectrosc., 23, 149 (1967).

⁽⁶⁾ K. Niedenzu, W. Sawodny, H. Watanabe, J. Dawson, T. Totani, and W. Weber, Inorg. Chem., $6,\,1453$ (1967).

⁽⁷⁾ W. Harshbarger, G. Lee, R. F. Porter, and S. H. Bauer, *ibid.*, 8, 1683 (1969).

⁽⁸⁾ C. H. Chang, R. F. Porter, and S. H. Bauer, *ibid.*, **8**, 1689 (1969).

⁽¹³⁾ The authors wish to express their appreciation to Dr. J. Allkins of Spex Industries, Inc., for his invaluable assistance in obtaining the gaseous Raman spectrum of borazine.

shown in Figure 2. Due to the natural abundance of ${}^{10}B$ (20%) and ${}^{11}B$ (80%), four isotopic species are expected in the ratio ${}^{11}B_8$; ${}^{11}B_2{}^{10}B$; ${}^{11}B{}^{10}B_2$; ${}^{10}B_3 = 64$; 48:12:1. The bands due to the mixed isotopic species are largely eliminated in the spectrum of 96% ${}^{10}B$ -enriched sample, shown in Figure 3 together with the gasphase fundamentals. The effect of the matrix on the observed structures has been examined by varying the M/R ratio from 200 to 1000 and by using xenon in place of argon and mixed matrices of argon-xenon. The bands do not shift position, and the structures observed are essentially retained.

The spectra of normal boroxine and 96% ¹⁰B-enriched boroxine in an argon matrix (M/R = 1000) near 5°K are shown in Figure 4. Structure similar to that

Figure 4.—Infrared spectra of (A) $H_3B_3O_3/Ar = 1/1000$ and (B) $H_3^{10}B_3O_3/Ar = 1/1000$ near 5°K.

found in borazine is also observed near 1400 and 2600 cm⁻¹. The observed frequencies of $H_3B_3O_3$ and $H_{3^{-10}B_3O_3}$, along with the gas-phase fundamentals, are listed in Table III. Spectra for $D_3B_3O_3$ are given in Table IV.

With the exception of the spectral regions near 1400 and 2500 cm⁻¹ the remainders of the infrared spectra of both borazine and boroxine are simple and similar to the gas-phase spectra. The 1450-cm⁻¹ region in borazine and the 1380-cm⁻¹ region in boroxine are associated with in-plane degenerate ring motions, and the 2500-cm⁻¹ region in borazine and the 2600-cm⁻¹ region in boroxine are associated with the degenerate B–H stretching modes. The other degenerate fundamentals do not exhibit this complex structure.

The observed gas-phase Raman spectrum for normal borazine is shown in Figure 5. The observed frequencies, along with the published liquid Raman lines, are listed in Table V.

Vibrational Assignments. Borazine.—Borazine, with D_{3h} symmetry, should have ten infrared active funda-

	THE INFRAR	ED SPECTRA OF	H ₃ B ₃ N ₂ H ₃ And	$H_{3}^{10}B_{3}N_{3}H_{3}$	
H3 ⁿ B3N3H3 in		Han BaNaHa	HaloBaNaHa		H3 ¹⁰ B3N3H3 in
Ar matrix	Assignment	gas ⁴	gasa	Assignment	Ar matrix
403 s	$\nu_{1b}(A_2'')$	394)		
			396	$\nu_{10}(A_{2}'')$	406 m
$518 \mathrm{w}$	$\nu_{17}(\mathbf{E}')$	518			
525 vw, sh	¹¹ B ₂ ¹⁰ B				
			528	$\nu_{17}(\mathbf{E}')$	528 w
683 vw, br	$\nu_{10} + \nu_{20}$				
	403 + 280 = 683				
713 m	¹¹ B ₂ ¹⁰ B resonance				
718 s	$\nu_{\theta}(\mathbf{A_2}^{\prime\prime})$	719			
721 sh	¹¹ B ¹¹ B				
			725	$\nu_{\vartheta}(A_2'')$	724 vs
733 m, sh	${}^{10}B_3$ + resonance				
788 vw	$\nu_{17} + \nu_{20}$				
	518 + 280 = 798				
805 vw					010
				$\nu_{17} + \nu_{20}$	813 vw
0051	117 107			528 + 280 = 813	004 -1-
905 s, sn 012	$^{11}B_2^{10}B$ resonance	019		**B2**B	904 SH
913 VS	$\nu_8(A_2)$	918	020	(A - Y')	910 SH 026 we
924 VS			930	$\nu_{s}(\mathbf{A}_{2})$	520 VS
1000 yr br				110 ± 1100	1009 vw
1000 VW, DI	$280 \pm 718 = 998$			724 + 285 = 1009	1000 11
1068 w	$\mu_{10}(\mathbf{E}')$			$v_{10}(\mathbf{E}')$	1072 w
1102 m br	$\nu_{16}(\mathbf{E}')$	1096	1	¥16(12)	1012 0
1102 m, 51	,13(12)	1000		$v_{15}(\mathbf{E}')$	1106 w
1130 vw				. 10(_)	
1192 w, br	$\nu_8 + \nu_{20}$				
,	913 + 280 = 1193				
				$\nu_8 + \nu_{20}$	1208 vw
				926 + 285 = 1211	
1225 w	$\nu_4 + \nu_{10}$				
	845 + 403 = 1248				
1289 w	$\nu_{17} + \nu_{19}$				
	518 + 770 = 1288				
1294 sh	${}^{11}B_{2}{}^{10}B$				
				$\nu_{17} + \nu_{14}$	1295 w
				528 + 770 = 1298	
1310 w	$\nu_7 + \nu_{17}$				
	782 + 518 = 1310				1200 ***
				704 + 528 - 1222	1022 W
1969				794 + 528 = 1522	
1909 11	$\nu_4 \rightarrow \nu_{17}$ $\rho_{45} = 510 - 1262$				
1366 ch	340 - 518 = 1303				
1300 sh	B2B 11B10B.				
1376 w sh	10Bo			$y_4 \rightarrow y_{17}$	1376 m
1010 10, 51	23			848 + 528 = 1376	
1380 w	$\nu_{10} + \nu_{18}$				
	403 + 977 = 1380				
	or $\nu_{20} + \nu_{15}$				
	280 + 1102 = 1382				
1387 sh	¹¹ B ₂ ¹⁰ B				
				$\nu_{10} + \nu_{18}$	1391 m
				406 + 985 = 1391	
				or $\nu_{15} + \nu_{20}$	
1000				1106 + 285 = 1391	
1396 s, sh	11B ⁵ 10B				
1909 -	resonance	1400			
1398 S 1402 ch	$\nu_{14}(\mathbf{E}^{+})$ 11D 10D.	1406			
1402 811			1408	$u_{i}(\mathbf{F}')$	1404 s
			1-100	×14(±/)	1420 w
1448 vs	$\nu_3 + \nu_{17}$		r		
***	940 + 518 = 1458				
1452 s, sh	$^{11}B_2^{10}B$				
1458 vs	$\nu_{13}({ m E}^{\prime})$	1465		¹¹ B ₃	1458 vw, sh
$1461 \mathrm{sh}$					1461 w, sh

TABLE I							
ΉE	Inf r ared	Spectra	OF	$H_3B_3N_8H_3$	AND	$H_{3}^{10}B_{3}N_{3}$	

BORAZINE AND BOROXINE

		TABLE I (Continued)		
Ha ⁿ BaNaHa in		HanBaNaHa	Ha10BaNaHa		Ha10BaNaHa in
Ar matrix	Assignment	gasa	gasa	Assignment	Ar matrix
1400	112 102	Bus	Buo		
1466 s	¹¹ B ₂ ¹⁰ B			11B210B	1468 vw, sh
1472 m, sh					
1476 m	11B10Ba			11B10B	1476 s. sh
14901-	5 52			$D D_i$	1400 -1-
1480 vw, sn					1480 sn
1486 vw, sh	${}^{10}B_3$		1488	$\nu_{13}({\rm E}')$	1486 vs
1490 w. br	$v_0 + v_{10}$				
1 -00 m, 3 1	719 + 770 = 1499				
	$710 \pm 770 = 1400$				
1495 vw	$\nu_{17} + \nu_{18}$				
	518 + 977 = 1495				
				··· ···	1509
				$\nu_3 + \nu_{17}$	1002 5
				974 + 528 = 1502	
				$\nu_{18} + \nu_{17}$	1520 vw
				$985 \pm 528 = 1513$	
1500	1			1010	1500
1590 VW	$\nu_{16} + \nu_{17}$			$\nu_{16} + \nu_{17}$	1599 vw
	1068 + 518 = 1586			1072 + 528 = 1600	
1818 w. br				$v_{9} + v_{10}$	1696 vw
,				0.96 + 770 - 1606	2000 11
1010				$920 \pm 770 = 1090$	
1848 vw	$\nu_3 + \nu_8$			$\nu_9 + \nu_{18}$	1710 vw
	940 + 913 = 1853			724 + 985 = 1709	
	$OT v_7 + v_{16}$				
	$782 \pm 1068 = 1850$				
1871 w, br	$\nu_{15} + \nu_{19}$			$\nu_{18} + \nu_{19}$	1750 vw, br
	1102 + 770 = 1872			$985 \pm 770 = 1755$	
1900				1 100 1 1100	1050
1090 VW	$\nu_8 - \nu_{18}$			$\nu_{16} + \nu_{19}$	1850 vw
	913 + 977 = 1890			1072 + 770 = 1842	
1921 w	$\nu_4 + \nu_{16}$			$\nu_7 + \nu_{16}$	1864 vw
	$845 \pm 1068 = 1013$			$704 \pm 1072 = 1866$	
	040 1000 = 1910			194 - 1012 - 1800	1000
	or $\nu_{14} + \nu_{17}$			$\nu_{14} + \nu_{17}$	1932 vw
	1394 + 518 = 1912			1404 + 528 = 1932	
2002 w. br	$\nu_2 + \nu_{18}$				
2002, 52	$040 \pm 1068 = 2008$				
	$940 \pm 1008 = 2008$				
2146 m	$2 \nu_{16}$				
	2(1068) = 2136				
0159					
2108 W	$\nu_{14} + \nu_{19}$				
	1394 + 770 = 2164				
2168 vw	$\nu_{15} + \nu_{16}$				
	$1102 \pm 1068 - 2170$				
	$1102 \pm 1008 = 2170$				
2175 vw	$\nu_7 + \nu_{14}$			$\nu_7 + \nu_{14}$	2 194 w
	782 + 1394 = 2176			794 + 1404 = 2198	
0010					
2210 W	$\nu_{13} + \nu_{19}$				
	1458 + 770 = 2228				
2230 vw	$v_{11} + v_{14}$				
	$945 \pm 1904 = 0000$				0000
	845 + 1394 = 2239				2320 vw
	or ${}^{11}B_2{}^{10}B$				
2352 w				$\nu_{8} + \nu_{14}$	2370 vw. br
				$974 \pm 1404 = 9378$	· · · · · · · , · ·
2208 c				UII 1101 - 2010	
4000 S	$\nu_8 \pm \nu_{13}$				
	940 + 1458 = 2398				
2408 m	¹¹ B ₂ ¹⁰ B				
2416 m	11B10B				
94911	1010				0400
2421 vw, sn	10B3				2422 m
2430 w	$\nu_{13} + \nu_{18}$				
	1458 + 977 = 2435				
9438 ch	11B-10B				
2438 511	D2 D				
2449 vw	$^{11}B^{10}B_2$				
				ν ₈ + μ ₁₈	2452 w
				$074 \pm 1498 = 9480$	
9499				$314 \pm 1400 = 2400$	
2483 m	$\nu_{14} + \nu_{15}$				
	1394 + 1102 = 2496				
2491 sh	¹¹ B ₉ ¹⁰ B				
2408 s ch	11B 10B.				
2170 3, SH	20101				
				$\nu_{14} + \nu_{15}$	2501 vs
				1404 + 1106 = 2510	
2513 vs	ы) (E')	2520			
2519 -1-		2020			
2018 Sn	D2-°В				2518 vw
2522 vs					
}	$\nu_{13} + \nu_{16} + {}^{11}B^{10}B_{2}$				
2532 118	$1458 \pm 1069 = 9596$		0595	·· (F())	0500
2002 (3)	1100 - 1000 = 2020		2030	P12(E)	2029 vs

		Table I (Continued)		
H\$ ⁿ B\$N\$H\$ in Ar matrix	Assignment	H3 ⁿ B3N3H3 gas ^a	H3 ¹⁰ B3N3H3 gas ^a	Assignment	H3 ¹⁰ B3N3H3 in Ar matrix
2540 s, sh					
				$\nu_{13} + \nu_{16} \\ 1486 + 1072 = 2558$	2549 vs
2554 m, br	$\nu_{13} + \nu_{15} \\ 1458 + 1102 = 2560$				
2560 sh	¹¹ B ₂ ¹⁰ B				
2565 sh	¹¹ B ¹⁰ B ₂				
2579 m	¹¹ B ₂ ¹⁰ B resonance				
2589 s	$ \nu_6 + \nu_{14} $ $ 1195 + 1394 = 2589 $			$ \nu_{15} + \nu_{13} $ $ 1106 + 1486 = 2592 $	2590 vw
2602 m	¹¹ B ₂ ¹⁰ B resonance				
2612 m					
2622 w	Isotopic resonance				
2627 vw	-				
,				$\frac{\nu_6 + \nu_{14}}{1237 + 1404} = 2641$	2641 m
2660 w, br	$\nu_6 + \nu_{13}$ 1195 + 1458 = 2653				
2669 vw	${}^{11}\mathrm{B_2}{}^{10}\mathrm{B}$			$\nu_6 + \nu_{13}$ 1237 + 1486 = 2723	2 71 0 vw
2820 vw, br				$\nu_4 + \nu_{12} \\ 848 + 2529 = 3377$	3380 vw
3457 s, br	$\nu_3 + \nu_{12}$ 940 + 2513 = 3453				
3465 s, sh	${}^{11}B_2{}^{10}B$				
3482 s	$\nu_{11}(\mathbf{E}')$	3486	3486	$ \nu_{11}(\mathbf{E}') $ $ \nu_3 + \nu_{12} $ $ 974 + 2529 = 3503 $	3482 s 3503 sh

^a Gas data from ref 6.

Figure 5.—Raman spectrum of gaseous borazine.

mentals (3 $A_{2}'' + 7 E'$), fourteen Raman-active ones $(4 A_1' (p) + 7 E' (dp) + 3 E'' (dp))$, and three which are inactive $(3 A_2')$. The assignment of the A_2'' vibrations is that of Kartha, et al.,⁵ based on band shapes. These are observed as single bands at 403, 718, and 913 cm^{-1} in the matrix. Six of the seven E' vibrational species assigned by Niedenzu, et al.,6 are confirmed. These are at 3482, 2513, 1458, 1394, 1102, and 518 cm⁻¹ compared to the gas phase at 3486, 2520, 1465, 1406, 1096, and 518 cm⁻¹, respectively. Niedenzu, et al., reported ν_{16} at 990 cm⁻¹,⁶ but in the matrix no corresponding band is observed. A very weak band at 1000 cm^{-1} can readily be assigned to $\nu_9 + \nu_{20}$. The weak band at 1068 cm^{-1} upon *B*-deuteration shows a large shift to 812cm⁻¹. In the gas-phase Raman spectrum the 1068cm⁻¹ band is depolarized, and its band shape is similar to those of the other observed E' mode at 518 cm⁻¹. From the Raman spectrum the position of the A_1' modes in the gas phase was found shifted from the reported liquid frequencies. The symmetric N-H stretch, v_1 , and the B–H stretch, ν_2 , were observed in the gas phase at 3488 and 2545 cm⁻¹ compared with the observed frequencies in the liquid at 3453 and 2535 cm⁻¹, respectively. The ν_3 and ν_4 modes were observed, respectively, at 942 and 857 cm^{-1} in the gas phase, at 940 and 852 cm^{-1} in the liquid, and in combination at 940 and 845 cm^{-1} in the matrix. The E'' modes in the gas-phase Raman spectrum were observed at 987, 787, and 280 cm⁻¹. Niedenzu, et al., have reported these fundamentals in the liquid at 968, 798, and 288 cm^{-1} . They have identified the 968-cm⁻¹ band by polarization measurements since a disproportionately large fraction of that band remained, indicating a depolarized component.6 Polarization measurements on the gas spectrum indicated the entire 968-cm⁻¹ band as being polarized. In the matrix, in combination, the E'' modes, ν_{18} , ν_{19} , and ν_{20} , were found at 977, 770, and 280 cm⁻¹ respectively.

Using combination bands it was possible to estimate the positions of two of the three inactive A_2' modes. These are ν_6 at 1195 cm⁻¹ and ν_7 at 782 cm⁻¹.

The assigned frequencies of matrix-isolated borazine for the three isotopic species considered here are summarized in Table VI. The product rule was applied where possible and the results are tabulated in Table VII.

Boroxine.—Group theory predicts for boroxine seven infrared-active fundamentals (5 E' + 2 A_2'') and ten Raman-active ones (3 A_1' + 5 E' + 2 E''); two are expected to be inactive (2 A_2'). Grimm, *et al.*,⁹ have been able to identify only one of the two expected A_2''

	T	HE INFRARED SP.	ECTRUM OF D ₃ B ₃ N ₃ H	I ₈	
D3B3N3H3 in Ar matrix	Assignment	D3B3N3H3 gas ^α	D:B:N:H: in Ar matrix	Assignment	D3B3N3H ga9 ^a
330 m, br	$\nu_{10}(A_2'')$	327	1450 s, sh	¹¹ B ₂ ¹⁰ B	
507 w	$\nu_{17}(\mathrm{E}')$	509	$1457 \mathrm{sh}$	Partially deuterated	
713 m	$\nu_{9}(\mathbf{A_{2}}^{\prime\prime})$	716		species	
$716 \mathrm{sh}$	¹¹ B ₂ ¹⁰ B		1460 s. sh	¹¹ B ¹⁰ B ₂	
719 sh	¹¹ B ¹⁰ B ₂		1467 m. sh	$2\nu_{18}, 2(734) = 1468$	
724 sh	¹⁰ B ₃		,		
767 vw	$\nu_{17} + \nu_{20}$		1476 m, sh	${}^{10}B_3 + 713 + 760 = 1473$	
	507 + 260 = 767		1548 w	$\nu_4 + \nu_9$	
779 w, sh	Partially			845 + 713 = 1558	
788 w, sh \rangle	deuterated		1 84 0 w	$\nu_{14} + \nu_{17}$	
793 vw, sh)	species			1326 + 507 = 1833	
803 vs	$\nu_8(A_2'')$	808	1876 w	$\nu_4 + \nu_{15}$	
808 s, sh	${}^{11}B_{2}{}^{10}B$			845 + 1019 = 1864	
812 s, sh	$\nu_{16}(E')$		1900 sh		
814 sh	¹¹ B ¹⁰ B ₂		1905 sh		
913 m)	Partially		1912 vs	$\nu_{12}({\rm E'})$	1897
925 w∫	deuterated species		1921 sh	$\nu_8 + \nu_{15}$	
1020 w	$\nu_{15}(\mathbf{E}')$	1022		904 + 1020 = 1924	
1275 w	$\nu_{15} + \nu_{20}$		1932 s, sh	¹¹ B ₂ ¹⁰ B	
	1020 + 260 = 1280		1937 sh	¹¹ B ¹⁰ B ₂	
1326 s	$\boldsymbol{\nu}_{14}(\mathbf{E'})$	1328	1946 w	$\nu_{13} + \nu_{17}$	
1338 w				1437 + 507 = 1944	
1343 w			1956 w	¹⁰ B ₃	
1352 vw	$\nu_4 + \nu_{17}$		2055 w	$\nu_{14} + \nu_{18}$	
	845 + 507 = 1352			1326 + 734 = 2060	
1360 w			22 3 0 vw	$\nu_3 + \nu_{14}$	
1377 m				904 + 1326 = 2230	
1379 m, sh	Partially		2240 vw		
1381 m, sh \rangle	deutorated species		2290 w	$\nu_4 + \nu_{13}$	
1387 sh	deuterated species			845 + 1437 = 2282	
1399 w, br			2530 w		
1415 vw	$\nu_3 + \nu_{17}$		2560 vw		
	904 + 507 = 1411		2850 vw		
1437 vs	$\nu_{13}(\mathrm{E'})$	1440	2915 vw		
1440 sh	Partially deuterated		3457 m, sh	$\nu_3 + \nu_{12}$	
	species		3462 m, sh	974 + 2529 = 3503	
	or $\nu_9 + \nu_{18}$		3480 s	v ₁₁ (E')	3485
	713 + 734 = 1447			• •	
" Gas data from	rofß				

TABLE II			
	~	3.7	-

^a Gas data from ref 6.

modes, at 918 cm⁻¹. In the matrix this band has shifted to 910 cm⁻¹. The other A_2'' vibration was also undetected in the matrix, but a frequency of 380 cm^{-1} for the out-of-plane B–O–B ring bend, ν_7 , was found in combination. This compares with 403 cm^{-1} for the similar B-N-B motion in borazine. The E' assigninents of Grimm, et al., were confirmed. Using their predicted in-plane frequencies as a basis two of the A_1' modes, ν_2 and ν_3 , were estimated at 906 and 800 cm⁻¹. respectively, and were observed in combination. Combination-mode fitting also allowed the two A₂' modes to be identified at 1477 and 1197 cm⁻¹, compared with the calculated frequencies of 1448 and 1183 cm⁻¹, respectively. The E'' modes, ν_{13} and ν_{14} , were observed in combination if vibrational frequencies of 1053 and 340 cm^{-1} were assumed, respectively. These compare with the observed frequencies of the isoelectronic molecule s-triazine, H₃N₃C₃, of 1031 and 340 cm⁻¹, respectively.¹⁴

The assigned frequencies of matrix-isolated boroxine, for the three isotopic species considered, are summarized in Table VIII. The product rule was applied where (14) J. E. Lancaster, R. F. Stamm, and N. B. Colthup, Spectrochim. Acta, **17**, 155 (1961). possible, and the results are presented in Table IX. The fit for the A_{2}' species is the poorest since the location of some of the shifted bands is in doubt (Table VIII).

Discussion

It is interesting to note that in both borazine and boroxine the absorptions due to the B-H out-of-plane bend (913 and 910 cm⁻¹) and for borazine the N-H out-ofplane bend (718 cm⁻¹) as well have associated with them abnormal band structure. In borazine the bands at 718 and 913 cm⁻¹ display a shoulder at lower frequencies and the relative intensity of the band due to the ¹⁰B₃-containing species is much stronger than is expected from the natural abundance of that species (Figure 1). In boroxine, there is a shoulder on ν_6 at a lower frequency, 905 cm⁻¹, and an unusually weak isotope structure at 921 and 929 cm⁻¹ (Figure 4). The $\nu_6(A_2'')$ at 910 cm⁻¹ shifts to 929 cm⁻¹ in the case of 96% ¹⁰Benriched boroxine. The mixed isotopic species, with C_{2v} symmetry, transform the A_2'' species to B_1 and the E'' into $A_2 + B_1$. If these B_1 species overlap, Fermi resonance may shift one to lower and the other to higher

	THE INFE	ARED SPECTRA	of H3B3O3 an	D H ₃ ¹⁰ B ₃ O ₃	
H₃ ⁿ B₃O₃ in Ar matrix	Assignment	$\mathbf{H_{i^n}B_{iO_i}}$	${ m Hs^{10}BsOs} \ { m gas}^a$	Assignment	H3 ¹⁰ B3O3 in Ar matrix
530 m	$\nu_{12}(\mathrm{E}^{\prime})$	530			
534 w			537	ν ₁₂ (Ε')	538 s 730 vw 775 vw 820 vw, br
875 vw	$\begin{array}{r}\nu_{12} + \nu_{14} \\ 530 + 343 = 873\end{array}$				005
005	110 100			$\begin{array}{r} \nu_{12} + \nu_{14} \\ 538 + 347 = 885 \end{array}$	885 VW
905 vw	$^{11}B_{2}^{10}B$	010			010
910 s	$\nu_6(\mathbf{A_2}^{(1)})$	918		¹¹ B ₂ ¹⁰ B	912 VW
920 vw	10D		0.25	(A / l)	920 sn
950 w 974 m	BaHa imputity		950	$\nu_6(\Lambda_2)$	929 8
974 III	D ₂ 116 mipurity			¹⁰ B ₂ H ₅ impurity	978 w
985 vw	$\nu_{11}(\mathbf{E}')$	990	1005		1000
1168 s	B ₂ H ₆ impurity		1025	$\nu_{11}(\mathbf{E}^{\prime})$	1002 vw
	220 mipu-109			B_2H_6 impurity	1172 vw
1180 vw	$\nu_3 + \nu_7$ 800 + 280 - 1180				
	300 + 300 = 1180			10 th 11	1190 vw
				$v_3 + v_7$ 802 + 388 = 1190	1150 ***
1208 m	$\nu_{10}({ m E}^{\prime})$	1213			
1215 w	¹¹ B ₂ ¹⁰ B			¹⁰ B ₂ ¹¹ B	1214 w
1000			1228	$\nu_{10}(\mathbf{E}^{\prime})$	1225 s
1330 m	$\frac{\nu_{12} + \nu_3}{530 + 800} = 1330$				
1333 w, sh	$\nu_{11} + \nu_{14} \\ 990 + 343 = 1333$				
				$\nu_{12} + \nu_3$	1340 m
		1000		538 + 802 = 1340	
1379 vs	ν ₉ (Ε')	1389			
1381 Sn 1202 m	ma 🕂 mit				
1555 111	1050 + 343 = 1393				
1404 vs	¹¹ B ₂ ¹⁰ B			$\nu_{13} + \nu_{14}$	1398 m
1410 ch				1060 + 347 = 1407	1408 sh
1410 51	1100 1000			11 D 10 D.	1418 ch
1410 11	BB2		1428	$r_{\alpha}(\mathbf{F}')$	1421 vs
			1120		1432 sh
1435 vw	$\nu_{12} + \nu_{2}$				1442 sh
	530 + 906 = 1436				
				$\nu_{12} + \nu_2$	1470 vw
				538 + 932 = 1470	
1592 vs	B_2H_6 impurity			B ₂ H₄ impurity	1596 m
1825 w, br	$\nu_2 + \nu_6$				
	906 + 910 = 1816				
				$\nu_2 + \nu_6$	1868 w
1882 w br	$v_0 + v_{11}$			932 + 929 = 1801	
1002, 51	906 + 990 = 1896				
				$\nu_2 + \nu_{11}$	1892 vw
				932 + 1002 = 1934	2115 vw
					2125 vw
2160 w br	BH ₂ CO impurity			BH ₃ CO impurity	2167 w. br
2335 vw, br	$\nu_{9} + \nu_{11}$				2410 vw, br
,	1379 + 990 = 2369				
2460 m, br	BH ₃ CO impurity			BH ₃ CO impurity	2460 br
0504				$2\nu_8(?)$	2515 m
2024 vs	B_2H_6 impurity			B_2H_6 impurity	2530 w. sh

	TABLE III							
Ð	Infrared	Spectra	OF	$H_3B_3O_3$	AND	$\mathrm{H}_{8}{}^{10}\mathrm{\dot{B}}_{8}\mathrm{O}_{8}$		

		Table III	(Continued)		
H₃ ⁿ B₃O₃ in Ar matrix	Assignment	H ^{an} BsOs gas ^a	H3 ¹⁰ B3O3 gas ^a	Assignment	H₃ ¹⁰ B₃ in Ar matrix
2576 m	$\nu_9 + \nu_5$ 1379 + 1197 = 2576				
2582 w	${}^{11}B_{2}{}^{10}B$				2591 w
2592 m, sh	$\frac{\nu_9 + \nu_{10}}{1379 + 1208} = 2587$				2600 vw
$2605 \operatorname{sh}$	$B_{2}H_{6}$ impurity				
2610 vs	$\nu_8(\mathbf{E'})$	2620			
			2624	$\nu_8({ m E}^{\prime})$	2614 vs
$2620 \operatorname{sh}$					
2630 sh					
				$ \nu_9 + \nu_5 $ $ 1421 + 1227 = 2648 $	2649 w
2768 w	$2\nu_9 = 2758$			or $\nu_9 + \nu_{10}$	
2850 w	$ \nu_9 + \nu_4 \\ 1379 + 1477 = 2856 $			1421 + 1225 = 2646	
2910 w	$\frac{\nu_8 + \nu_{14}}{2610 + 343} = 2953$				

^a Gas phase data ref 9.

	Тни	E INFRARED SPE	CTRUM OF D ₃ B ₃ O ₃		
D₃ ⁿ B₃O₃ in Ar matrix	Assignment	D3 ⁿ B3O3 gas ^a	D3 ⁿ B3O3 in Ar matrix	Assignment	$\mathbf{D}_3^{\mathbf{n}}\mathbf{B}_8\mathbf{O}_3$ gas ^a
522 m	ν ₁₂ (Ε')	522	1325 s	$\nu_{12} + \nu_3$	
718 w	B_2D_6			300 + 322 = 1322	
726 vw			1365 vs	$\nu_9(\mathbf{E'})$	1373
			1374 sh	$\nu_{12} + \nu_{13} \\ 522 + 852 = 1374$	
$748 \mathrm{w}$	$\nu_{11}(\mathbf{E'})$	760			
758 w	${}^{11}B_{2}{}^{10}B$		1381 s, sh	$\nu_2 + \nu_{12} \\ 860 + 522 = 1382$	
776 w			1391 vs	¹¹ B ₂ ¹⁰ B	
			1397 sh		
798 s, sh			1404 s	$^{11}B^{10}B_2$	
802 s	$\nu_6(A_2'')$	808			
810 ms	¹¹ B ₂ ¹⁰ B		1760 w	$\begin{array}{r} \nu_5 + \nu_{11} \\ 1012 + 748 = 1760 \end{array}$	
814 m, sh			1770 איז	Isotonio spories	
870 m	BaDa		1770 VW	isotopic species	
010 Ш	12208		1850 s	B ₂ D ₅	
910 w					
			1885 vw	$ \nu_9 + \nu_{12} $ $ 1365 + 522 = 1887 $	
11 3 0 m	$\nu_{10}({ m E}^{\prime})$	1133			
1139 w	¹¹ B ₂ ¹⁰ B		1900 vw		
1145 vw	¹¹ B ¹⁰ B ₂		1905 vw		
1155 vw	$ \nu_3 + \nu_7 $ 800 + 355 = 1155		1915 w		
			1937 s, sh	$\frac{\nu_3 + \nu_{10}}{800 + 1130} = 1930$	
1192 vs	B_2D_6				
			1948 vs	$\nu_8(\mathbf{E'})$	194 0
1225 vw	$\nu_2 + \nu_7$		1964 m, sh	${}^{11}B_{2}{}^{10}B$	
	860 + 355 = 1215		1980 s	B_2D_6	
			2160 vw, br	BH3CO	
·			2260 vw	$2\nu_{12} = 2(1130) = 2260$ or $\nu_8 + \nu_{14} = 1948 + 217 - 2265$	
			2340 vw, br	$CO_2(?)$	

TABLE IV

	Raman Si	PECTRUM OF H3B3N3H3	
Gas phase	Matrix inferred	Assignment	$Liquid^a$
270 wm ^b			
	2 8 0	$\nu_{20}({\rm E}^{\prime\prime})$	288 wm, dp
290 wm ^b			
518 wm	518	$\nu_{17}(\mathrm{E'})$	521 wm, dp
555 w		$2\nu_{20}(E' + A_1')$	
685 vw			
787 w	770	$\nu_{19}(\mathbf{E}^{\prime\prime})$	798 vw
857 vs, p	845	$\nu_4(A_1')$	852 s, p
892 w		$\nu_{17} + \nu_{10}(E'')$	
		518 + 394 = 912	
942 vs, p	940	$\nu_3(A_1')$	940 vs, p
958 s, p		¹¹ B ₂ ¹⁰ B	953 sh, p
968 w, p		¹¹ B ¹⁰ B ₂	968 w
976 vw, p		$^{10}B_{3}$	
987 w	977	$\nu_{18}({\rm E''})$	968
1068 w, dp	1068	$\nu_{16}({\bf E'})$	1070 m, dp
		$\nu_{14}(\mathrm{E'})$	1371 w, br, dp
		$\nu_{13}({\rm E'})$	1458 w, dp
2422 w			
2455 vw			
2505 vw, sh, dp		$\nu_{14} + \nu_{15}(E' + A_1')$	
		1406 + 1096 = 2502	
2515 w, sh, dp	2513	$\nu_{12}(\mathrm{E'})$	2510 w, sh, dp
2525 m, dp		$\nu_{13} + \nu_{16}(E' + A_1')$	
		1465 + 1068 = 2533	
2545 vs, p		$\nu_2(A_1')$	2535 vs, p
2557 s, p		¹¹ B ₂ ¹⁰ B	
2570 w		$^{11}\mathrm{B}^{10}\mathrm{B}_{2}$	
2580 vw		$^{10}B_{3}$	
3473		$\nu_2 + \nu_3(A_1')$	
		2545 + 942 = 3487	
3488 vs, p		$\nu_1(A_1')$	3453 vs, p
3490 w, sh		$\nu_{12} + \nu_{18}(E' + A_1')$	
		2520 + 987 = 3507	
3523		$\nu_2 + \nu_{18}(E')$	
		2535 + 987 = 3522	

^{*a*} Liquid data from ref 6. ^{*b*} Center of band at 280 cm^{-1} .

TABLE VI									
The V	IBRATION	al Fundament	als of Boraz	$EINE^a$					
$\mathbf{H}_{\$}^{11}\mathbf{B}_{\$}\mathbf{N}_{\$}\mathbf{H}_{\$} \qquad \mathbf{H}_{\$}^{10}\mathbf{B}_{\$}\mathbf{N}_{\$}\mathbf{H}_{\$} \mathbf{D}_{\$}^{11}\mathbf{B}_{\$}\mathbf{N}_{\$}\mathbf{H}_{\$}$									
A_1'	ν_1	$(3488)^{b}$	(3488)	(3488)					
	ν_2	(2545)	(2554)	(1893)					
	ν_3	940	974	904					
	ν_4	845	848	845					
A_2'	ν_{5}								
	ν_6	1195	1237						
	ν_7	782	794	· · · •					
$A_2^{\prime\prime}$	ν_8	913	926	803					
	ν_9	718	724	713					
	ν_{10}	403	406	330					
E'	ν_{11}	3482	3482	3480					
	ν_{12}	2513	2529	1912					
	ν_{13}	1458	1486	1437					
	ν_{14}	1394	1404	1326					
	ν_{15}	1102	1106	1020					
	ν_{16}	1068	1072	812					
	ν_{17}	518	528	507					
$E^{\prime\prime}$	ν_{18}	977	985	734					
	ν_{19}	770	770	760					
	ν_{20}	280	285	260					

 a Frequencies observed in argon matrix. b Values in parentheses not observed but inserted from Raman data.

frequency. The effect in boroxine is very dramatic as the intensity of the bands is drastically reduced. Possible confirmation of the above argument is found in the

	,	Table VII				
	PRODUCT RULE CALCULATIONS					
	$H_{3^{10}}B_{3}N_{3}H_{3}/H_{3^{11}}B_{8}N_{3}H_{3}$		$\mathrm{D}_{3^{11}}\mathrm{B}_3\mathrm{N}_3\mathrm{H}_3/\mathrm{H}_{3^{11}}\mathrm{B}_3\mathrm{N}_3\mathrm{H}_3$			
Species	Theoret	Exptl	Theoret	\mathbf{Exptl}		
A_1'	1.049	1.048	0.707			
A_2'	1.032		0.745			
A_2''	1.029	1.030	0.720	0.715		
$\mathbf{E'}$	1.079	1.061	0.509	0.491		
$E^{\prime\prime}$	1.032	1.026	0.745	0.689		

		TABLE VI	II					
VIBRATIONAL FUNDAMENTALS OF BOROXINE ^{α}								
		$H_{3^{11}}B_{3}O_{3}$	${ m H}_{3}{}^{10}{ m B}_{3}{ m O}_{3}$	$D_{3^{11}}B_3O_3$				
A_1'	ν_1	$(2616)^{b}$	(2630)	(1959)				
	ν_2	906	932	860				
	ν_3	(800)	802	800				
A_2'	ν_4	1477	(1517)	(1470)				
	ν_5	1197	(1227)	1012				
$A_2^{\prime\prime}$	ν_6	910	929	808				
	ν_7	(380)	388	(355)				
Ε′	ν_8	2610	2614	1948				
	$\boldsymbol{\nu}_9$	1379	1421	1365				
	ν_{10}	1208	1225	1130				
	v_{11}	990	1002	748				
	ν_{12}	530	538	522				
$E^{\prime\prime}$	ν_{13}	1050	1060	852				
	ν_{14}	343	347	(317)				

 a Frequencies observed in argon matrix. b Values in parentheses are estimated.

TABLE V Aman Spectrum of H2B3N3H2

TABLE IX PRODUCT RULE CALCULATIONS

	~H ₃ ¹⁰ B ₃ O ₃ /H ₃ ¹¹ B ₃ O ₃ ~		-D ₃ ¹¹ B ₃ O ₃ /H ₃ ¹¹ B ₃ O ₃ -	
Species	Theoret	Exptl	Theoret	Expt1
A_1'	1.049	1.037	0.707	0.711
A_2'	1.013	(1.053)	0.734	(0.841)
$A_2^{\prime\prime}$	1.030	1.042	0.720	(0.829)
E'	1.079	1.075	0.509	0.514
Е''	1,013	1.020	0.734	0.749

absence of this structure in B-monosubstituted borazines.^{15,16}

Fermi resonance is also invoked to understand the structure in the region from 1440 to 1490 cm^{-1} (Figure 2), already discussed to some extent before. The combination found for this region is $\nu_3 + \nu_{17}(E')$ at 1458 cm⁻¹. This combination shifts to 1502 cm⁻¹ for ¹⁰Benriched samples. The symmetry of the combination is the same as for the fundamental. Hence Fermi resonance is allowed and both the combination band and the fundamental are shifted. Thus the gas-phase frequency of the fundamental is probably in error; in the matrix it is impossible to make a certain choice of the fundamental between the 1448- and the 1458-cm⁻¹ bands and on the basis of intensity alone the 1458-cm⁻¹ band was picked. The large amount of structure in the band system is due to the mixed-species combinations. Going from D_{3h} to C_{2v} for the ¹¹B₂¹⁰B and ¹¹B¹⁰B₂ species, the A_1' is transformed into A_1 , and the E', into $A_1 + B_1$. The combinations $A_1 \cdot A_1 = A_1$, and $A_1 \cdot B_1 = A_1$. B_1 are allowed, and hence there are four bands due to the two isotopic species. Similar arguments hold for the region from 2450 to 2700 cm⁻¹. In the case of 96%¹⁰B-enriched sample there are three bands in this region; presumably the other bands observed in the case of normal borazine are due to isotope structure. On this basis the 2513-cm⁻¹ band is taken as the fundamental and the 2483- and 2522-cm⁻¹ bands are assigned to $\nu_{14} + \nu_{15}(E')$ and $\nu_{13} + \nu_{16}(E')$, respectively. In combination the mixed species will produce four bands each, for a total of eight. This accounts for the rich structure. Much of this information is not available in the gas-phase infrared spectrum due to the rotational envelope. The complex structure near 1400 and 2600 cm⁻¹

for boroxine is resolved in a manner similar to the one discussed above.

The assignments above were made with the assumption that both borazine and boroxine retain their gaseous structure in the matrix. While most bands have shifted from their gas-phase position by a few per cent, these shifts are much smaller than the shifts observed for molecules where strong interactions with the matrix occur. Experiments with mixed matrices prove that no strong matrix perturbations take place and rule out multiple trapping site effects. Degenerate modes are apparently not split. The observed complex structures discussed above can be understood in terms of the resonance interactions between strong fundamentals and combination bands occurring at nearly the same frequency. The selection rules in the matrix appear to follow those in the gas phase, leading to the conclusion that gaseous symmetry has been retained. These conclusions suggest further that of the two possible electron diffraction structures for borazine, the planar model is the more stable one and the only one present at low temperature.

The close correlation between the gaseous and liquid Raman spectra is surprising because it indicates that in liquid borazine there is very little association.

The borazine assignments reported here are in essential agreement with the calculated frequencies resulting from the recently published normal-mode treatment of Blick, Dawson, and Niedenzu,¹⁷ although several of the actual frequencies used there need to be modified. It would appear that using their force constants as a starting point in a refinement would allow a very good force constant treatment of borazine. The inactive A2' modes could certainly be calculated. By using the information available for borazine it was possible, through a combination-band analysis, to assign all the fundamentals of boroxine. The ring modes and those involving B-H modes compare for the two molecules remarkably well. It would now be possible to perform a normal-mode analysis for the out-of-plane modes of boroxine.

Acknowledgments.—We gratefully acknowledge financial support from the Army Research Office (Durham) and the Advanced Research Projects Agency (Materials Science Center, Cornell University).

(17) K. E. Blick, J. W. Dawson, and K. Niedenzu, ibid., 9, 1416 (1970).

⁽¹⁵⁾ M. Oertel and R. F. Porter, Inorg. Chem., 9, 904 (1970).

⁽¹⁶⁾ R. F. Porter and E. S. Yeung, *ibid.*, 7, 1306 (1968).